

DNS Security Ready for Prime Time

2000 June

Olafur Gudmundsson <ogud@tislabs.com> Edward P. Lewis <lewis@tislabs.com> NAI Labs

Main Problem: Retrofitting security into complex and fragile infrastructure protocol (DNS) and get it deployed!!

Joint Government and Industry Support for Reference Implementation

- Open, Standards Based DNS Security
- Standards Defined Through the Internet Engineering Task Force (IETF) Process
- DARPA Funded Research Defined Requirements and Provided Research Implementation

Joint Government & Industry Support for Reference Implementation

- Government Focus
 - Security Enhancements
 - Improved Operations and Tools
 - Standards Compliance
- Industry Focus (Compaq, HP, IBM, Sun, SGI, Process Software, NIIabs)
 - New Functionality
 - Performance Enhancements
 - Multiprocessor Support

BIND-v9: New IETF Standards compliance

- DNSSEC
 - Required for Data Authenticity & Integrity
- [Secure] Dynamic Updates
 - Required for Mobile Users and Dynamically Configured Hosts
- IPv6
 - Required for Next Generation Internet Protocol
- EDNS0
 - To allow larger datagrams

New BIND-v9: Operational Requirements

- Large, Rapidly Growing DNS Usage
 - Huge Increase in Number of DNS Users
 - Size and Number of DNS Zones Growing Rapidly
 - Extendable to Back End Data Base
- Increasing Complexity of DNS
 - New Standards Drive More Complex DNS Questions & Answers

BIND (v9): Functional Requirements

- Provide Capability to Generate Single Answer from Multiple, Partial Answers
 - Required for IPv6 Address Derivation and DNSSEC
- Improve Distribution of DNS Processing
 - Provide Secure DNS Resolver that can Reuse Previous Answers
- Provide Incremental Transfer of DNS Zone Data

BIND (v9): Performance Enhancements

- Support for Multiprocessor Systems
 - Needed for Heavily Loaded Servers
- Support for Multiple Thread Processing
 - Needed to Process Complex Answers
- Improved Internal Data Structures
 - Reduces Format Conversion Load
- Enhanced Storage Format for DNS Files
 - Needed for Rapid Restarts

DNS Security Ingredients

- DNS Security Extensions
 - KEY and SIG resource records
 - NXT resource records
- Query-Response Security
 - TSIG and SIG(0) meta records
 - TKEY meta record
- Serving Security Data
 - CERT(ificate) resource record
- Dynamic Update Security
 - authorization of updates

Features

- Protection of Internet-scale DNS data transfers
 - Data is signed using scaleable public keys
 - Absent data notices (e.g. NXDOMAIN) secured
- Protection of local DNS transfers
 - Entire message secured (header and data)
- Public Key Infrastructure
 - Look up keys instead of trusting "what is heard" or manually entered
- Secured dynamic updates to zones
 - Authorized changes to zone data can be made

Deployment Plans

- Major push in Europe
 - Three ccTLD's plan to have signed zones by first quarter next year, one as soon as 31/12/2000
 - CENTR has a DNSSEC WG in action
- Root Servers
 - Looking into adoption, sooner rather than later
 - Need BIND 9 to be out & stable first
- U.S.
 - Nothing firm, just some "interest"
- Deployment experience is needed to evaluate the current protocol definition

DNS Terminology

Things to keep in mind

DNS RRs and RR sets

Things to keep in mind

- <owner> <ttl> <class> <type> <rdatalen> <rdata>
 - myname.xy. 14400 IN A 123.123.123.123
 - myname.xy. 14400 IN A 203.123.245.123
- In DNS today
 - Records with common owner, type, class are treated together, but still are singular entities
- For DNSSEC
 - The RR set is formalized
 - No longer are records singular, always treated as a set
- * So, I will be talking about "sets" of data

Zones vs. Servers

Things to keep in mind

- Zone is an administrative cut of the name space
- Name server is a host dispensing information
- Relationship
 - A zone is served by name servers (1 or more)
 - A name server may serve many zones (0 or more)
 - Authoritative servers have the original zone data
 - Primary master server has the data in a source text file
- * DNSSEC secures on the basis of zones
- * Query/Response secures between a resolver and a server
 - Or, in the case of zone transfers, between two servers

DNS Security Extensions

Start of "details

- Protecting data transfers in which scalability is critical
 - I.e., inter-server queries
- Resource records introduced
 - SIG holds a digital signature (asym. keys)
 - KEY holds a public key
 - NXT indicates data present and next name

The KEY RR

The SIG RR

The NXT RR

Type Bit Map

<o-t-c> 1.39.171.199.in-addr.arpa. NS SOA TXT SIG KEY NXT

Next name

A quirk of NXT

- The NXT record indicates the data sets present at the owner's name
- It also indicates the next name in the zone
- There is one NXT for most names, but delegation names have two
 - A delegation name appears both above and below the cut point
 - One NXT belongs to the "upper" zone
 - The other to the "lower" zone
- NXT's are not generally "loved"

A signed zone, page 1

This example shows the KEY, SIG, and NXT RRs

```
; Generated by dns signer dated October 18, 1999
SORIGIN tise.cairn.net.
@ 14400 IN
              SOA
                    test.netsec.tislabs.com, lewis.tislabs.com, 2000020701 1D 1H 1W 4H
  14400 IN
                    SOA 3 3 14400 20000306184745 20000207184745 48320 tise.cairn.net. (
              SIG
                   AIrF9Hb/BzoZ3xir1K81xLzprIEVBFZLEE6Sqy8HlaU5r3ux
                   VfBbcTA= )
 14400 TN
              KEY 0 \times 4100 3 3 (
                   ALb/qZO/oVHyotuSbBWI1N+OYwRLv5RMc7XXb0wYE/tY02qF
                   Uf+9czS0B7pU2jYppF7RwL8b/OcWG3iAzaztzq6S0ZoOIh8J
                   M5LummzJiNl3aqxDxUZH6pwmPNuiMbGl++2tUks+MAallpUz
                   4tEJPeBF+Zj8boYwWhQDaV6nwDY6kIrqRqhvAmOZHqtqzFT6
                   SdA07usEZEzZkXXS6PIg6JcN7mNhUa0qkDSNTIkrHWNCh++G
                   56dtKNxk4qn3ESreg/S2BRGWQ2/7X0PjMyBkDefvdIsw )
              SIG KEY 3 3 14400 20000225145656 20000128145656 48320 tise.cairn.net. (
  14400 IN
                   AKM6fdJmcV3Wec7sYKR5ktX2C3kWTLTcITD4iBP2rJVSF1Kx
                   nsi3bRI= )
```

...continues on next slide...

A signed zone, page 2

```
14400 IN NS
                      buddy.netsec.tislabs.com.
                      active.netsec.tislabs.com.
       14400 IN NS
       14400 IN NS
                      test.netsec.tislabs.com.
                      NS 3 3 14400 20000225145656 20000128145656 48320 tise.cairn.net. (
       14400 IN SIG
                      AKqbf3kRV1P63jDVS96dq9dMB/OXjLw0FDtdUuyVIq2Q3Z23Ep5835k= )
       14400 IN NXT
                      active.tise.cairn.net. NS SOA SIG KEY NXT
                      NXT 3 3 14400 20000225145656 20000128145656 48320 tise.cairn.net. (
       14400 IN SIG
                      AHZaL7BjH012VUL10Jb6qXIsXjRhICsWvMapVfP2qBrGMGY13c7yIk8= )
active 14400 IN CNAME active.netsec.tislabs.com.
                      CNAME 3 4 14400 20000225145656 20000128145656 48320 tise.cairn.net. (
       14400 IN SIG
                      ACqtgIY8TkwTw83rQmt3f0P0x+TmpcCtCz1+EsFmYybcSY01hP2Nht4= )
active 14400 IN NXT
                      amp.tise.cairn.net. CNAME SIG NXT
                      NXT 3 4 14400 20000225145656 20000128145656 48320 tise.cairn.net. (
       14400 IN SIG
                      AC75idNrAm501YUS1ZBD9ecDgEDdFWlWN+etN74AqVoDlhtYW8dmWeo= )
       14400 IN NS
                      test.netsec.tislabs.com.
amp
       14400 IN NS
                      active.netsec.tislabs.com.
       14400 IN NS
                      buddy.netsec.tislabs.com.
       14400 IN NXT
                      buddy.tise.cairn.net. NS SIG KEY NXT
amp
                      NXT 3 4 14400 20000225145656 20000128145656 48320 tise.cairn.net. (
       14400 IN SIG
                      ADg3LFw5GvcFHgC7UaCZrK/rn5IVOg8ddTgkWz9PK9Z1KvToQbNZ3NQ= )
```

....and there's still more to the zone, not shown

Squint

DNSSEC Queries

Going secure

- Preparation (not necessarily in order)
 - A "secured" zone begins with an "unsecured" zone
 - Zone key pair generated and validated by parent
 - SIG records generated for each set in zone
 - NXT and SIG(NXT) are generated and added
- Running
 - Response to query includes the desired set(s), the SIG (set), and possibly KEY and SIG(KEY)'s that will help the resolver evaluate the answer
 - There are many variations on this, this is the general theme

Query/Response Security

- Processing power is a greater issue than scalability
 - This includes lightweight resolver queries to a "preferred" server
 - Zone transfers (AXFR)
 - A basis for securing dynamic update
- (Meta-) Resource records introduced
 - TSIG/SIG(0)
 - TKEY

TSIG

- A "keyed hash" covering entire DNS message
 - Uses a shared secret,
 shared between
 resolver and server
- Messages covered
 - query response
 - zone transfer
 - dynamic updates

TSIG Notes

- Storage of shared secret is an issue
 - No problem for named.conf, it can be protected
 - Problem for resolv.conf
 - TKEY is a proposed method for creating TSIGs
- Early use of TSIG
 - Zone transfers
 - "Special" clients (e.g., DHCP updaters)
- Widespread use later
 - Once overhead of sharing secrets is reduced

TSIG in configuration files

Primary server options {...;};

```
key "test" {
  algorithm hmac-md5;
  secret "ThePlaceToBe";
};
server 10.33.40.35 {
  keys {test;};
};
```

Secondary server options {...;};

```
key "test" {
    algorithm hmac-md5;
    secret "ThePlaceToBe";
};
server 10.33.40.46 {
    keys {test;};
};
```


SIG(0)

- Functionally equivalent to TSIG
 - Uses asymmetric keys instead of shared secret
- Messages covered
 - query response
 - zone transfer
 - dynamic updates

SIG (0) Notes

- Defined in RFC 2535 w/KEY, SIG, and NXT
 - A current Internet Draft fixes the specification
- SIG(0) requires a public key to be in a zone
- Suffers performance hit of public key cryptography
 - Useful where performance hit isn't as bad as overhead managing shared secrets
- Requires client to have a private key available to the resolver

TKEY

- Sent in a request to create a TSIG shared secret
- Request is accompanied by a KEY from which to generate the shared secret
- This is an example of the optimization on the "Cryptography" slide (#11)

TKEY Notes

- TKEY is sent by resolver to set up a TSIG with server
 - Diffie-Hellman mode
 - GSSAPI in Windows 2000
 - Server or Client assigned (no implementations)
- A TSIG is set up and used in subsequent queries and responses
- Unsigned DH TKEY requests can pose a denial of service threat
 - Allowing "anonymous" TKEY is dangerous because of the CPU load induced

Security Data Server

- DNS can provide a public, scaleable, redundant mechanism to pass public security data
 - Certificates & Public Keys
- DNSSEC validation of data has limits
 - DNSSEC provides that "what you see is what I sent"
 - DNSSEC does not provide assurance that the contents were entered correctly
- Resource record introduced
 - CERT(ificate)

The CERT RR

- Certificates are a means to bind a public key to an identity with conditions
- DNS CERT RR's can store different kinds of certificates (X.509, SPKI, PGP)
- Software to make the RR's is still lacking

Securing Dynamic Update

- Still in definition (in IETF Last Call)
- BINDv9 implements Secure Update
 - TSIG or SIG(0) covered messages identify the requestor
 - The name server holds an authorization matrix indicating whether the requestor is allowed to make the requested change
 - Granularity of the policy is being defined, some defaults are being identified, rest is up to admin

Impact

- DNSSEC will increase attention paid to DNS
 - Data (SIG) "expires" from the authoritative server
 - No more "load & forget"
 - Delegations have a recurring relationship
 - Administrators have to manage keys
 - NOC procedures needed for this
 - Need more resources (CPU) to run

Validating Delegations

- Validation of a zone's keys by its parent is important
 - Provides "proof" of zone delegation
 - Relationship between delegations be interactive
- Work is progressing on automating this
- Will this help keep registry info current?

Off-line Signing

The DNSSEC specification refers to "off-line signing"

Key Generator & DNS Server(s)

Admin/Protected Company/Public Network

Air Gap or Server(s)

Company/Public Network

Reason: Protect the Private Key(s)

Secure Dynamic Update complicates this

Issue: Will this be done?

